منابع مشابه
On $Phi$-$tau$-quasinormal subgroups of finite groups
Let $tau$ be a subgroup functor and $H$ a $p$-subgroup of a finite group $G$. Let $bar{G}=G/H_{G}$ and $bar{H}=H/H_{G}$. We say that $H$ is $Phi$-$tau$-quasinormal in $G$ if for some $S$-quasinormal subgroup $bar{T}$ of $bar{G}$ and some $tau$-subgroup $bar{S}$ of $bar{G}$ contained in $bar{H}$, $bar{H}bar{T}$ is $S$-quasinormal in $bar{G}$ and $bar{H}capbar{T}leq bar{S}Phi(bar{H})$. I...
متن کاملOn weakly $mathfrak{F}_{s}$-quasinormal subgroups of finite groups
Let $mathfrak{F}$ be a formation and $G$ a finite group. A subgroup $H$ of $G$ is said to be weakly $mathfrak{F}_{s}$-quasinormal in $G$ if $G$ has an $S$-quasinormal subgroup $T$ such that $HT$ is $S$-quasinormal in $G$ and $(Hcap T)H_{G}/H_{G}leq Z_{mathfrak{F}}(G/H_{G})$, where $Z_{mathfrak{F}}(G/H_{G})$ denotes the $mathfrak{F}$-hypercenter of $G/H_{G}$. In this paper, we study the structur...
متن کاملon weakly $mathfrak{f}_{s}$-quasinormal subgroups of finite groups
let $mathfrak{f}$ be a formation and $g$ a finite group. a subgroup $h$ of $g$ is said to be weakly $mathfrak{f}_{s}$-quasinormal in $g$ if $g$ has an $s$-quasinormal subgroup $t$ such that $ht$ is $s$-quasinormal in $g$ and $(hcap t)h_{g}/h_{g}leq z_{mathfrak{f}}(g/h_{g})$, where $z_{mathfrak{f}}(g/h_{g})$ denotes the $mathfrak{f}$-hypercenter of $g/h_{g}$. in this paper, we study the structur...
متن کاملON SUBGROUPS OF M24. II: THE MAXIMAL SUBGROUPS OF M2i
In this paper we effect a systematic study of transitive subgroups of M24, obtaining 5 transitive maximal subgroups of M24 of which one is primitive and four imprimitive. These results, along with the results of the paper, On subgroups of M2i. I, enable us to enumerate all the maximal subgroups of M24. There are, up to conjugacy, nine of them. The complete list includes one more in addition to ...
متن کاملOn Ss-quasinormal and Weakly S-permutable Subgroups of Finite Groups
A subgroup H of a group G is called ss-quasinormal in G if there is a subgroup B of G such that G = HB and H permutes with every Sylow subgroup of B; H is called weakly s-permutable in G if there is a subnormal subgroup T of G such that G = HT and H ∩ T ≤ HsG, where HsG is the subgroup of H generated by all those subgroups of H which are s-permutable in G. We fix in every non-cyclic Sylow subgr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nagoya Mathematical Journal
سال: 1966
ISSN: 0027-7630,2152-6842
DOI: 10.1017/s0027763000012034